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Abstract

An (2, H)-good coloring is the coloring of the edges of a (hyper)graph ¢ such
that no subgraph H C . is monochrome or rainbow. Similarly, we define an (¢, H)-
proper coloring being the coloring of the vertices of 77 with forbidden monochromatic
and rainbow copies of H. An (47, K;)-good coloring is also known as a mixed Ramsey
coloring when J# = K, is a complete graph, and an (J#, K;)-proper coloring is a
mixed hypergraph coloring of a t-uniform hypergraph 5#°. We highlight these two
related theories by finding the number of (7}, K3)-good and proper colorings for some
k-trees, T}' with k& > 2. Further, a partition of an edge/vertex set into i nonempty
classes is called feasible if it is induced by a good/proper coloring using i colors. If r;
is the number of feasible partitions for 1 < i < n, then the vector (r1,...,7,) is called
the chromatic spectrum. We investigate and compare the exact values in the chromatic
spectrum for some 2-trees, given (T3, K3)-good versus (74, K3)-proper colorings. In
particular, we found that when G is a fan, ro follows a Fibonacci recurrence.

Keywords: chromatic spectrum, Stirling numbers, mixed hypergraphs, k-trees.

1 Preliminaries

It is customary to define a hypergraph € to be the ordered pair (X, ), where X is a finite
set of vertices with order |X| = n and £ is a collection of nonempty subsets of X, called
(hyper)edges. € is said to be linear (otherwise it is nonlinear) if Ey N Ey is either empty or
a singleton, for any pair of hyperedges. The number of vertices contained in E of £, denoted
|E|, is the size of E. When |E| = r, ¢ is said to be r-uniform and a 2-uniform hypergraph



HC = G is a graph. For more basic definitions of graphs and hypergraphs, we recommend
[17].

Consider the mapping ¢ : A — {1,2,..., A} being a A-coloring of the elements of A. A
subset B C A is said to be monochrome if all of its elements share the same color and B is
rainbow if all of its elements have distinct colors. Let H be a subgraph of a graph G. An edge
coloring of G is called (G; H)-good if it admits no monochromatic copy of H and no rainbow
copy of H. Likewise, a (G; H)-proper coloring is the coloring of the vertices of G such that
no copy of H is monochrome or rainbow. Figure 1(A) is an example of a (G; K3)-proper
coloring while Figure 1(B) shows a (G; K3)-good coloring.

Axenovich et al.[2] have referred to (K, K3)-good coloring as mixed-Ramsey coloring,
a hybrid of classical Ramsey and anti-Ramsey colorings [2, 8, 14] and the minumum and
maximum numbers of colors used in a (K, K3)-good coloring have been the subject of
extensive research in [2, 3|, for instance. Further, in mixed hypergraph colorings [16], a
hypergraph # that admits an (##; H)-proper coloring is called a bihypergraph when H = K;,
the complement of a complete graph on ¢ > 3 vertices. We note here that, mixed hypergraphs
are often used to encode partitioning constraints, and recently bihypergraphs have appeared
in communication models for cyber security [11]. Although this paper focuses on graphs, it
is worth noting that the results concern some linear and nonlinear bihypergraphs as well.

A partition of an edge/vertex set into ¢ nonempty classes is called feasible if it is induced
by a good/proper coloring using i colors. If r; is the number of feasible partitions for
each 1 <7 < n, then the vector (rq,...,r,) is called the chromatic spectrum. The chromatic
spectrum of mixed hypergraphs has been well studied by several researchers such as Kral and
Tuza [5, 6, 12, 13]. Here, we found the values in the chromatic spectrum for any (G; H)-good
or (G; H)-proper colorings when G is some non-isomorphic 2-trees, which are triangulated
graphs, and H is a triangle. A comparative analysis of these values is presented in our effort
to establish some bounds. In the process, we found that when G is a fan, 5 follows a shifted
Fibonacci recurrence. If we denote the falling factorial by A\: = A(A—1)(A—2)... (A—i+1),

then the (chromatic) polynomial P(G;H,\) = P(G;H) = Z'r’i)\i, counts the number of
colorings given some constraint on H, using at most A colors.l rEhis polynomial is commonly
known in the case of vertex colorings of graphs with a forbidden monochrome subgraph H €
{K,, K;} [4,7,15]. In this paper, we also presented this polynomial for k-trees with forbidden
monochrome or rainbow K; for all t > 3. Here, the Stirling number of the second kind is
denoted by {Z}, it counts the number of partitions of a set of n elements into k£ nonempty
subsets. See Table 4 for some of its values. These notations and other combinatorial identities
can be found in [10]. In Appendix, we present some arrays of the values of the parameters
involved in this article; the zero entries are omitted in each table.

2 Chromatic polynomial of some k-trees

As a generalization of a tree, a k-tree is a graph which arises from a k-clique by 0 or more
iterations of adding n new vertices, each joined to a k-clique in the old graph; This process



generates several non-isomorphic k-trees. Figure 1 shows two non-isomorphic 2-trees on 6
vertices. K-trees, when k > 2, are shown to be useful in constructing reliable network in [9].
Here, we denote by T}, a k-tree on n + k vertices which is obtained from a k-clique S, by
repeatedly adding n new vertices and making them adjacent to all the vertices of S. When
k = 2, this particular 2-tree is also known as an (n+1)-bridge 6(1,2,...,2). See Figure 1(B)
when n = 4.

Uy

(A) Fan graph, F* (B) 5-bridge graph, Ty

Figure 1: Two non-isomorphic 2-trees with a unique (£*; K3)-proper 4-coloring
and a unique (Ty; K3)-good 5-coloring

Theorem 2.1. The number of (1}}; Kj+1)-good colorings of a k-tree on n + 2 vertices is
k k
PTP: Kipr) = A — 17 + A0k = (= (5 1 (aA6) = A&y

Proof. Given any coloring of T}, one of the following is true:

(i) S is monochromatic giving A colorings. For each such coloring, there are \¥ — 1 ways
to color the remaining k edges, that arise from each of the n vertices added, giving the first
term.

(ii) S is rainbow giving A2l colorings. For each such coloring, there are \¥ — (X — |S]|)&
ways to color the remaining k edges of each of the n(k + 1) cliques, giving the second term.

(4ii) S is neither monochromatic nor rainbow giving AI°I — ML X colorings. For each
such coloring, there are A\¥ ways to color the remaining edges of each added vertex, giving
the last term. The result follows from the fact that |S| = (g) [

IS]

Using a similar argument as in the proof of Theorem 2.1 when |S| = k, gives

Theorem 2.2. The number of (1}'; Ki11)-proper colorings of a k-tree on n + 2 wvertices is
gwen by



Remark 1: When k£ = 2, observe from the proof of Theorem 2.1 that the number
of (Ty; K3)-good colorings are identical for non-isomorphic 2-trees. However, in the next
section, we show that this is not the case for (T3'; K3)-proper colorings.

3 Chromatic spectra of (monochrome and rainbow)-
triangle free 2-trees

Here, we find and compare the values in the chromatic spectrum of some 2-trees. The
next proposition is instrumental in expressing several formulas in the previous section into
a falling factorial form, giving the chromatic spectral values.

n+l n—k+1
1—
Proposition 3.1. The equality A\(A —1)" = E [ E (—1)* (n) {n +k‘ SH M holds for
s

alln > 1.

Proof. Clearly,

=0
n n+1—1 .
i n+1-—1i
= S (s T
i
=0 k=1
B % nfl(—l)s (n) {n +1-— SH)\k
B S k
k=1 s=0
- n\[n+1-s
= —1)* 1
S (T h 0
s=0
n+l n—k+1
s(n\[n+1—s
12 3 D INE () P 1P ®
k=2 s=0
The result follows from the fact that (1) is equal to zero. O
Corollary 3.0.1. The chromatic spectrum of any (T3'; K3)-good coloring is (ra, ..., Tky -y Tnt1),
n—k+1 .
" qn\[n+1—1
whererk:3(;(—1) (z){ ) }),sz,...,n+1.
Proof. The result follows from Theorem 2.1 when k£ = 2, and Proposition 3.1. O]

Here is the analogous result in a (G; K3)-proper coloring when G is the (n + 1)-bridge
graph 6(1,2,...,2) which was shown to be a 2-tree on n + 2 vertices. For simplicity, let
T =0(1,2,...,2).



Corollary 3.0.2. The chromatic spectrum of any (T3"; K3)-proper coloring of a 2-tree on
n+ 2 vertices is (14, ..., Ty, ..., Tny1), where

n it n\ [n+1—1
—1) Fk>3
= 2 L) o

2" +1 otherwise.

Proof. From Theorem 2.2 (when k = 2), we have P(Ty"; K3) = A(A—1)"+2"A2, to which we

n—1 .
. 1—
apply Proposition 3.1. Also, observe that from (2) when k£ =2, ) (—1) (n) {n +2 Z} =
i
i=0

1, given the second statement. [

Now, we take a closer look at another well-known 2-tree. Construct a graph G as follows:
start with a triangle {w;,ws, u;}, and iteratively add n — 1 new vertices, such that each
additional vertex u; is adjacent to the pair {uy,u; 1}, fori =3,...,n+1, and uy is adjacent
to the pair {u;, w2}. We denote G by F", a fan on n + 2 vertices and Figure 1(A) is an
example when n = 4. Further, from the construction, it is clear that F'™ is also a 2-tree. Here,
we color the vertices of F", and recursively count the number of (F"; K3)-proper colorings.
To help illustrate this recursion, we present the next example.

Example 3.1. Chromatic spectrum of an (F*; K3)-proper coloring

Consider the fan F'*, obtained by iteratively adding n = 4 vertices to a base edge {wy, w»}
as shown in Figure 1(A). When n = 1, it is clear that there are exactly 2A2 + A2 ways to
color the vertices of the triangle {w;, wy,u;} so that it is neither monochrome nor rainbow.
The first and second terms count the cases when (a) c(uy) # c(ws) and (b) c(uy) = c(ws),
respectively. When n = 2, from (a) it follows that for each such colorings, there are exactly
two ways to color ug; either c(uz) = c(uy) # c(wq) or c¢(uz) = c(wz) # c(uy). Likewise from
(b), there are A — 1 ways to color uy such that c(us) # ¢(uy) = c(ws). Together, we have

P(F%K3) = 2(203) + (A =1A2 = N2+ (A — 1)] +2)2 (3)
As the terms in last expression of (3) are arranged so that the first term counts the case

when c(u;) # c(uz) and the last term counts the case when c¢(u;) = ¢(usy), we can apply once
again the same argument to the newly added vertex uz. Thus, we have

P(F% K3) = 2DX2Q+A—=1)]+A\=1D[2X = X2 +3\ = D] + A22+ (A —1)]. (4)

Similarly, by adding u, to £, we obtain from (4),

P(F%K3) = M2+500=1)+ A —1)%+ X 2+3(\ - 1)], (5)



after rearranging the expression so that the first and last terms count the cases when c(u;) #
c(uy) and c(uy) = c(uyq), respectively. Hence,

P(FY K3) = 44X\ —1)+8AA =12 + 1A(A — 1), (6)

Now apply Proposition 3.1 to each term of (6) to obtain

ey = a() () - (s
SO OR 00
Q-

= [4+83-2)+1(7-3-3+
= 13X2 4+ 1123 + 1), (7)

Thus, the chromatic spectrum of any (F*; K3)-proper coloring is (13,11, 1).

To support a general recursion presented in the next theorem, we let asog = 2,a41 =
5,a42 = 1,a43 = 2, and as4 = 3; Table 2 shows the values of each a;; (when n = 4). With
these coefficients we obtain directly from (5)

P(F4;K3) = 2{ ()\ ) +CL4 1()\ ) +CL472()\— 1)2]
+ Magz(A = 1)° + aga(A = 1)1
= (4 0AN = 1)+ o(4, DA = 1) + 6(4,2)A(A — 1), (8)
where ‘
=

We note that (8) follows from Theorem 3.1, when n = 4. Now, Proposition 3.1 gives

P(F%Kz) = [6(4,0)(1) + 6(4,1)(3 = 2) + ¢(4,2)(7 = 3- 3+ 3)|]\
+ [o(4,1)(1) + (4, 2)(6—3)]A§+ [6(4,2)]2*
= [6(4,0) + ¢4, 1) + ¢(4, 2)]X* + [6(4,1) + 36(4, 2)]X* + 6(4,2)A% (9)
Again, observe that (9) follows from (13) when n = 4. The values of ¢(n, ) when n = 11

are recorded in Table 3, with 0 < r < | %] . Thus, since ¢(4,0) =4, ¢(4,1) =8, ¢(4,2) = 1,
we have

P(F% K3) = 1302+ 1123 + 104
Table 1 in Appendix shows some of the chromatic spectal values given a (7T3'; K3)-good col-
oring, a (T4"; K3)-proper coloring and an (F"; K3)-proper coloring when n = 1,...,6. These

values can be derived from Corollary 3.0.1, Corollary 3.0.2, and Corollary 3.1.1 respectively,
for each coloring condition.



Theorem 3.1. The number of (F™; K3)-proper colorings is

P(F"™; K3) = Z d(n, r)AN — 1), where

0<r<| %]

Upy + @, [nt1 ifr <3
n,r) = § 20 e TS
Qn, 2 otherwise

and the values of a; ; satisfying, for 0 < j <i <mn,

(Z) ;0 = 2 and a11 = 1

Qi-1,j F Qj_q jy 1] 1 <7< (%1
(i1) for all eveni>2, a;; =<1 j=1
@i 1,41 [ <<
Qiyita, ;i 1<j<EL
(1it) for all odd i >3, a;; = AR A . J -2
i1 el <j<i

Proof. When n = 1, it follows that P(F'; K3) = ¢(1,0)A\(A — 1)* = [a10 + a;JA(A — 1)t =
3A(N — 1), since a9 = 2 and ay; = 1 by condition (). For n > 2, at each iteration, we
separate the cases when c(u;) # c(ug) from when c(u;) = c(uy). Further, we rearrange
the terms of the resulting expression of P(F*; K3) so that the first counts the colorings

c(uy) # c(ug), and the last counts the colorings c¢(u;) = c(uy) for k = 1,...,n. Hence, for
n>1,
P(F" K;) = Az( Z a1\ — 1)k—1> n )\2< Z (A — 1)k—(%1—1>
1<k<[24] 14+ [ 25 <k<n
= Z [an k-1 + @y, prpiy ey JAA = IDLans (10)
1<k<[m3E

where the coefficients a; ; are obtained recursively from items (i) — (4i7). By letting a;; =0
when ¢ < 7, it follows that

P(F™ Ks) = Y d(n,r)AA = 1), (11)

0<r<| %]

where

¢(n,r) =

3 n
G+ Gy, g1y, ifr <3

A, otherwise

B



Observation 1: The previous result can be reinterpreted as follows: Let apo = 2 and
define an (n + 1) X (n + 1) matrix A whose entries are the coefficients a; ; for 0 <i,j < n.
It follows that (10) is equivalent to the equation P = AA - B, where

P(F% K3) + A\ —2) ap,0
P(F}; K aio a
I P
P(FR7K3) Qpo Ap1 --- QApn

B = [BYB%." with B' = [(A =)' (A= D] and B2 = |(A = D) (- )]

When n = 10, we present the entries of the lower triangular matrix A in Table 2 to help
in the verification of the formula. The matrix A has several interesting properties some of
which we discuss in the next observation. For now, it is easy to see that its determinant

n+1
2

det(A) = Ham =2(] 1)!

and its characteristic polynomial is given by

(1" = ) (@ =2~ 3) (o~ [ ])

Corollary 3.1.1. The values in the chromatic spectrum of any (F™; K3)-proper color-

ing are given by 1, = Z (;S(n,r)( Z (_1)2(7"421) {rJrz—i}); for each

k—2<r<| 2] 0<i<r—k+2
k:2,...,[”7“} + 1, with

oy = § 0 F g s )
n,| 2| otherwise

Proof. For each r = 0,..., %], we apply Proposition 3.1 to P(F™; K3), giving

P Ky) = ¢<n,o>[<—1>0(



ntl 1 il
[ 1+ }]A(;ﬂﬂ‘ (12)
Therefore,

234+ 13

P(F™ Ky) = k; o) D (_1)i(rj1){r+:—i}pm (13)

r=k—2 0<i<r—k42

giving the result.
Observation 2: When k = [2H] + 1, the last term of (13) is

d(n, |2]) = {1 if n is even

3+ ”T_l otherwise
13

, 1 2—1
Also, it is worth noting that when k = 2, Z ¢(n,r)[ Z (—1) (T + ) {T + Z}] —

, ) 2
r=0 0<ei<r

,i
w3

]

¢(n,r); this proceeds from the simple fact that Z(—l)l (n) {n +2 z} =1, for all n.
i
i=0

o

) 12)
Further, observe that if we define b; = Z ¢(n, 7) for each i < n, it follows that b; = Z a; j
J=0 j
and the sequence {b,} satisfies the shifted Fibonacci recurrence given by by = 2, by = 3 and
b, = b,_1+ b,_s, for n > 2. From this observation, we determine the generating function in
the next proposition.

Proposition 3.2. The number of partitions of the n + 2 vertices of a fan into 2 nonempty
classes such that no triangle is monochrome or rainbow s given by

1++5 15
5 and = 5

1
by, =

(24 VB)a™ — (2 — V5)B"], where a =

S



Proof. Let b(z) = Z b,x™ such that by = 2, by = 3 and b,, = b,,_1 + b,,—o. It follows that

n=0

b(x) = 2+3x+ anm”

n=2

= 2+3w+bekxk —|—x2Zbkxk
k=1 k=0

= 2+3$—|—35(Zbka:k—2)+x226kxk
k=0 k=0
= 2+ + ab(z) + 2°b(w).

2 2 1 5 1—+/5
This implies that b(z) = ———© — — T itha— Y5 g L2VE
1—z— a2 (x+ a)(x+ p) 2 2
Using a partial fraction decomposition, and subsequently the power series, we obtain
1 16—-2 a-—2
) - LI -2
(z) Vile+8 x4+«
L B=2 = nom =2~ _. .
= —|— ax") — x
Al e - e
1 8-2, a-2 n] .
= — a” — x",
; 5 [ 15} « p
1 —2 —2
giving that b, = — [ﬁ o — a B"] The result follows, after a simplification.
Vbl B a -

In summary, the extreme chromatic spectral values given the aforementioned colorings
are clear; the lower values are, 7o = 3", rf, = 2" + 1, v = b(x) where

1 6-2 a— 2
b(x) = — " — "1. Also, for all n > 1, th 1 Iso sh t
(x) \/5[ 5 « - ﬁ} so, for all n , the upper values are also shown to

1 if n even
be r,yy =3" r ., =1 and 17, =
ntl +1 [4+1 {3 + ”T_l otherwise

/
n

4 Conclusion and future work

To the best of our knowledge, the problem of finding the exact chromatic spectral values in
a (K,, K;)-good coloring remains open for all ¢ > 3 and larger values of n; this particular
problem which was originally by one of the authors has greatly inspired this research. When
G is a 2-tree, the findings in Corollaries 3.0.1, 3.0.2, and 3.1.1 suggest the existence of

10



some constant ¢ < 1, such that r; = cr, where 7} and r; are the corresponding values
in the chromatic spectra of a (G; K3)-proper and a (G; K3)-good coloring, respectively. For
instance, ¢ = ()" when G is an (n+1)-bridge. Further work is needed to determine whether
the values in the chromatic spectrum of a (G; H)-good coloring remain upper bounds for
their counterparts in a (G; H)-proper coloring, given any other graph G and some subgraph
H.

Also, the original definition of a (G; H)-proper coloring can be extended to include more
than one subgraph. For instance, a (G; Hy, ..., Hy,)-proper coloring is the coloring of the
vertices of G such that no copy of (distinct) subgraphs H; is monochrome or rainbow, for
i=1,...,m. As such, when G = # and H; = K,,, S is a non-uniform bihypergraph
with hyperedges of size ¢t; > 3. Some related results concerning non-uniform bihypergraphs
can be found in [1]. As a step in this direction for graphs, we propose the next lemma.
This lemma shows that the chromatic spectral values of any (F™; K3, H)-proper coloring are
identical when H € {K;, Cy, Ps0OP,}, where P;00P, is isomorphic to 6(1,3,3), and K is a
complete bipartite graph with parts sizes 1 and ¢ > 2.

Lemma 4.1. Any (monochrome and rainbow)-triangle free proper coloring of a fan on n+2
vertices is an (F™; K3, H)-proper coloring for each H € { K+, Cy, PsOPy}, with L”T“J <t<
n+ 1.

Proof. Let S = {wy, wa, us, us, ..., u,} denote the set of rim vertices and let

Sy = {wi,ug, ..., uy}, for each 1 <r < |5]. Suppose H = K, and consider a coloring of
F™ such that ¢(u;) = ¢(vq) for each vy € S;. If F™ contains no monochrome and rainbow
triangle, it must be that c¢(u;) # c(ve) for each vertex vy € (S'\ S1). Pick any v} ¢ S;, and
by letting S; U {uy, vy} be the vertex set of the subgraph K;; C F", it is clear that K is
neither monochrome nor rainbow and the size of S; U {v}} gives the lower bound of ¢t. To
obtain the upper bound of ¢, color each vertex v € S with the same color and let ¢(u) # ¢(v)
for each v € S. This gives an (F™; K3)-proper coloring and it is also an (F™; K3, K ;)-proper
coloring, where the vertex set of Ky, C F™is S U {uy}.

Now we show that any (F™; K3)-proper coloring is an (F"; K3, Cy)-proper coloring. Since
every cycle on 4 vertices Cy C F™ must include uy, assume that Cy = (ug, vy, 09, v3,u1),
an ordered sequence of vertices. If the set {uy,vq,v9,v3} is monochrome/rainbow, then
Cy C F™ contains a monochrome /rainbow triangle, which is impossible. Hence C} is neither
monochrome nor rainbow, giving an (F"; K3, Cy)-proper coloring.

For all n > 5, observe that H = P3L1P, C F", and the argument follows from the fact
that 04 C PgDPg. ]

In conclusion, it is worth noting that future work can address the coloring of the vertices
of a graph with either forbidden monochrome subgraphs or forbidden rainbow subgraphs
(but not both). As a step in this direction, we present a simple case when coloring the
elements of an n-set such that no ¢-subset is rainbow.

Corollary 4.0.2. The chromatic spectral values in the colorings of the vertices of a complete
graph K, such that no K, is rainbow are given by rp = {Z}, fork=1,...,t—1.

11



Note that these values also correspond to the chromatic spectral values of any complete

t-uniform cohypergraph of order n; cohypergraphs are hypergraphs whose hyperedges are
forbidden to be rainbow given any proper (vertex) coloring [16].
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Appendix

(T3; K3)-good (T3"; K3)-proper (F™; K3)-proper
n=1](3) (3) (3)
n=2 32(171) (5,1) (5,1)
n=3|3(1,3,1) (9,3,1) (8,4)
n=4|3%1,7,6,1) (17,7,6,1) (13,11,1)
n=5]3°(1,15,25,10,1) (33,15,25,10,1) (27,17,5)
n=6| 3°(1,31,90,65,15,1) | (65,31,90,65,15,1) | (37,62,7,1)

Table 1: chromatic spectral values of some (G; K3)-good colorings and some (G; K3)-proper
colorings for n < 6

n\j 01 2 3 4 5 6 7 8 9 10 11
0 2

1 2|1

2 211 |2

3 213 |2 |1

4 25 |1 |2 |3

) 2,7 |4 |2 |5 |1

6 2/9 |9 |1 |2 |7|4

7 211165 |2 [9]9 |1

8 2(13(25(14 |1 [(2|11|16 |5

9 211536 (306 (2|13 |25|14 |1

10 217149 552012 |15]36|30 |6

11 12191649150 7|2 |17(49|55]20 |1

Table 2: Table of values of a; j, which are the entries of the matrix A when n = 11
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S
/
<

8 |8 [26]|1

= = O 00 30 Ul Wi+~ O

i)

0 2 3 4 5
2

3

4

4

4 1

4 5

4 13 |1

4 25 |6

4 41 |19 |1
4 61 |44 |7
4

4

113 | 146 | 70 | 8

3
/
e

Table 3: Table of values of ¢(n,r) when n = 11

= = O 00 30 ULk W N~ O

i)

0 2 3 4 5 6 7 8 9 10 11
1

01

0O(1]1

0(1|3 1

0,17 6 1

0(1)|15 25 10 1

0,131 90 65 15 1

0(1]|63 301 | 350 140 21 1

0/1]127 |966 |1701 1050 266 28 1

01255 | 3025|7770 6951 2646 462 36 1

0|1]511 |9330 | 34105 | 42525 | 22827 | 5880 | 750 45 1
011023 | 2850 | 145750 | 246730 | 179487 | 63987 | 11880 | 1155 | 55 | 1

Table 4: Table of values of {Z} when n = 11
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